organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

10-(4-Chlorophenyl)-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7tetrahydroacridine-1,8(2H,5H,9H,10H)dione

Yan Chen,^a Wen-Juan Hao,^b Zi-Qiang Tang,^a* Bo Jiang^b and Chun-Mei Li^b

^aSchool of Chemistry and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Received 23 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.146; data-to-parameter ratio = 14.1.

The title compound, C₃₀H₃₂ClNO₃, was synthesized by the reaction of dimedone with 4-methoxybenzaldehyde and 4chlorobenzenamine in water. The dihydropyridine ring is in a boat conformation. Both cyclohexene rings adopt envelope conformations. The chlorophenyl and methoxyphenyl rings form dihedral angles of 81.31 (11) and 88.84 (12)°, respectively, with the planar part of the dihydropyridine ring. The crystal packing is stabilized by weak C-H···O hydrogen bonds.

Related literature

For related literature, see: Mandi et al. (1994); Nasim & Brychey (1979); Reil et al. (1994); Thull & Testa (1994); Tu et al. (2004); Wysocka-Skrzela & Ledochowski (1976).

Experimental

Crystal data

C₃₀H₃₂ClNO₃ V = 2637.8 (8) Å³ $M_r = 490.02$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 12.227 (2) Å $\mu = 0.18 \text{ mm}^{-1}$ b = 10.883 (2) Å T = 298 (2) K c = 20.178 (3) Å $0.40 \times 0.38 \times 0.22 \text{ mm}$ $\beta = 100.788 (2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.933,\;T_{\rm max}=0.962$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	321 parameters
$vR(F^2) = 0.146$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
4516 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

10435 measured reflections

 $R_{\rm int} = 0.072$

4516 independent reflections

2146 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdotsO2^{i}$ $C21-H21A\cdotsO2^{ii}$	0.93	2.48	3.366 (4)	161
	0.96	2.53	3.418 (4)	154

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of the Jiangsu Province (grant No. BK2006033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2452).

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633-2636.
- Nasim, A. & Brychey, T. (1979). Mutat. Res. 65, 261-288.
- Reil, E., Scoll, M., Masson, K. & Oettmeier, W. (1994). Biochem. Soc. Trans. 22 62s
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.
- Tu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255-258.
- Wysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.

Acta Cryst. (2007). E63, o3934 [doi:10.1107/S1600536807042365]

10-(4-Chlorophenyl)-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2*H*,5*H*,9*H*,10*H*)-dione

Y. Chen, W.-J. Hao, Z.-Q. Tang, B. Jiang and C.-M. Li

Comment

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil *et al.*, 1994; Mandi *et al.*, 1994). We have reported the synthesis of *N*-hydroxylacridine derivatives, previously, (Tu *et al.*, 2004) and report herein the structure of the title compound.

In the title molecule, the dihydropyridine ring is in a boat conformation, with atoms N1 and C7 deviating from the C1/C6/C8/C13 plane by 0.099 (5) and 0.255 (5) Å, respectively (Fig. 1). Both cyclohexene rings adopt envelope conformations: atom C3 deviaties from the C1/C2/C4/C5/C6 by 0.667 (5) Å and atom C11 deviates from the C8/C9/C10/C12/C13 plane by 0.660 (5) Å. The dihedral angle between the C1/C6/C8/C13 plane and the C14–C29 benzene ring attached at atom N1 is $81.31 (11)^{\circ}$ and that between the C1/C6/C8/C13 plane and the C24–C29 benzene ring attached at atom C7 is $88.84 (12)^{\circ}$.

The crystal packing is stabilized by weak C—H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared by the reaction of dimedone (2 mmol) with 4-methoxybenzaldehyde (1 mmol) and 4-chlorobenzenamine (1 mmol) at 413 K under microwave irradiation (maximum power 150 W, initial power 100 W) for 12 min (yield 85%; m.p. 542–543 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (48%).

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

10-(4-Chlorophenyl)-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione

Crystal data	
C ₃₀ H ₃₂ ClNO ₃	$F_{000} = 1040$
$M_r = 490.02$	$D_{\rm x} = 1.234 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 542-543 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 12.227 (2) Å	Cell parameters from 2397 reflections
b = 10.883 (2) Å	$\theta = 2.4 - 25.4^{\circ}$
c = 20.178 (3) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 100.788 \ (2)^{\circ}$	T = 298 (2) K
$V = 2637.8 (8) \text{ Å}^3$	Block, yellow
Z = 4	$0.40 \times 0.38 \times 0.22 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	4516 independent reflections
Radiation source: fine-focus sealed tube	2146 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.072$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 14$
$T_{\min} = 0.933, T_{\max} = 0.962$	$k = -12 \rightarrow 12$
10435 measured reflections	$l = -24 \rightarrow 18$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 1.2116P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
4516 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
321 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.63124 (12)	-0.02238 (10)	0.23800 (6)	0.0953 (5)
N1	0.7981 (2)	0.4467 (2)	0.36849 (14)	0.0383 (7)
01	0.9443 (2)	0.8361 (2)	0.32608 (14)	0.0679 (8)
O2	0.9300 (2)	0.6883 (2)	0.56080 (13)	0.0635 (8)
O3	0.4979 (2)	1.0176 (2)	0.41504 (13)	0.0618 (8)
C1	0.8330 (3)	0.5342 (3)	0.32568 (17)	0.0358 (8)
C2	0.8322 (3)	0.4956 (3)	0.25370 (17)	0.0445 (9)
H2A	0.7686	0.4424	0.2388	0.053*
H2B	0.8989	0.4484	0.2521	0.053*
C3	0.8266 (3)	0.6043 (3)	0.20498 (18)	0.0458 (10)
C4	0.9179 (3)	0.6935 (3)	0.23476 (19)	0.0538 (11)
H4A	0.9896	0.6548	0.2352	0.065*
H4B	0.9134	0.7653	0.2059	0.065*
C5	0.9121 (3)	0.7340 (3)	0.30488 (19)	0.0456 (10)
C6	0.8679 (3)	0.6463 (3)	0.34922 (17)	0.0372 (9)
C7	0.8619 (3)	0.6884 (3)	0.41955 (17)	0.0397 (9)
H7	0.9316	0.7309	0.4381	0.048*
C8	0.8520 (3)	0.5780 (3)	0.46365 (17)	0.0387 (9)
С9	0.8828 (3)	0.5939 (3)	0.53650 (19)	0.0476 (10)
C10	0.8585 (3)	0.4910 (3)	0.58209 (18)	0.0546 (11)
H10A	0.8375	0.5269	0.6219	0.066*
H10B	0.9264	0.4445	0.5968	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.7674 (3)	0.4030 (3)	0.55013 (17)	0.0471 (10)
C12	0.7937 (3)	0.3617 (3)	0.48203 (17)	0.0446 (10)
H12A	0.8586	0.3087	0.4901	0.054*
H12B	0.7316	0.3139	0.4582	0.054*
C13	0.8154 (3)	0.4675 (3)	0.43802 (17)	0.0365 (8)
C14	0.7567 (3)	0.3295 (3)	0.34056 (17)	0.0373 (9)
C15	0.8265 (3)	0.2303 (3)	0.34167 (17)	0.0423 (9)
H15	0.9005	0.2368	0.3631	0.051*
C16	0.7876 (4)	0.1206 (3)	0.31119 (19)	0.0518 (11)
H16	0.8347	0.0532	0.3127	0.062*
C17	0.6786 (4)	0.1127 (3)	0.27868 (19)	0.0518 (11)
C18	0.6075 (4)	0.2106 (4)	0.27786 (19)	0.0592 (11)
H18	0.5335	0.2039	0.2563	0.071*
C19	0.6465 (3)	0.3196 (3)	0.30932 (19)	0.0508 (10)
H19	0.5985	0.3858	0.3094	0.061*
C20	0.7133 (3)	0.6675 (3)	0.1972 (2)	0.0701 (13)
H20A	0.7027	0.6976	0.2402	0.105*
H20B	0.6556	0.6096	0.1801	0.105*
H20C	0.7104	0.7349	0.1662	0.105*
C21	0.8439 (4)	0.5572 (3)	0.13605 (19)	0.0729 (14)
H21A	0.8441	0.6255	0.1059	0.109*
H21B	0.7847	0.5019	0.1179	0.109*
H21C	0.9139	0.5149	0.1412	0.109*
C22	0.6529 (3)	0.4660 (4)	0.5398 (2)	0.0684 (13)
H22A	0.6355	0.4869	0.5828	0.103*
H22B	0.5972	0.4112	0.5164	0.103*
H22C	0.6546	0.5394	0.5135	0.103*
C23	0.7667 (4)	0.2905 (4)	0.59582 (19)	0.0670 (12)
H23A	0.8377	0.2502	0.6017	0.100*
H23B	0.7095	0.2346	0.5754	0.100*
H23C	0.7526	0.3164	0.6389	0.100*
C24	0.7657 (3)	0.7782 (3)	0.41982 (17)	0.0383 (9)
C25	0.7838 (3)	0.8957 (3)	0.44530 (17)	0.0451 (10)
H25	0.8561	0.9202	0.4632	0.054*
C26	0.6972 (3)	0.9784 (3)	0.44502 (18)	0.0492 (10)
H26	0.7114	1.0567	0.4629	0.059*
C27	0.5906 (3)	0.9430 (3)	0.41801 (18)	0.0465 (10)
C28	0.5696 (3)	0.8255 (3)	0.39276 (19)	0.0536 (11)
H28	0.4971	0.8009	0.3753	0.064*
C29	0.6569 (3)	0.7451 (3)	0.39361 (19)	0.0508 (10)
H29	0.6424	0.6665	0.3761	0.061*
C30	0.5146 (4)	1.1371 (3)	0.4434 (2)	0.0681 (13)
H30A	0.5551	1.1311	0.4889	0.102*
H30B	0.4438	1.1751	0.4434	0.102*
H30C	0.5562	1.1857	0.4171	0.102*

Atomic	displacement	parameters	$(Å^2)$
--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1363 (12)	0.0698 (8)	0.0820 (9)	-0.0530 (8)	0.0264 (8)	-0.0276 (6)
N1	0.047 (2)	0.0310 (15)	0.0380 (18)	-0.0046 (14)	0.0118 (15)	-0.0043 (13)
01	0.076 (2)	0.0475 (16)	0.083 (2)	-0.0252 (15)	0.0219 (17)	-0.0111 (15)
02	0.070 (2)	0.0567 (17)	0.0580 (18)	-0.0008 (15)	-0.0039 (15)	-0.0193 (14)
O3	0.0567 (19)	0.0575 (17)	0.070 (2)	0.0176 (15)	0.0086 (15)	-0.0048 (14)
C1	0.036 (2)	0.0319 (19)	0.041 (2)	0.0021 (16)	0.0116 (17)	-0.0006 (16)
C2	0.059 (3)	0.0316 (19)	0.046 (2)	-0.0010 (18)	0.0175 (19)	-0.0008 (16)
C3	0.060 (3)	0.035 (2)	0.044 (2)	-0.0015 (19)	0.013 (2)	-0.0003 (17)
C4	0.064 (3)	0.045 (2)	0.055 (3)	-0.008 (2)	0.017 (2)	0.0015 (19)
C5	0.040 (2)	0.039 (2)	0.059 (3)	-0.0022 (19)	0.011 (2)	-0.0027 (19)
C6	0.037 (2)	0.0328 (19)	0.043 (2)	-0.0005 (17)	0.0107 (18)	-0.0047 (16)
C7	0.036 (2)	0.037 (2)	0.046 (2)	-0.0039 (17)	0.0060 (18)	-0.0081 (17)
C8	0.035 (2)	0.041 (2)	0.039 (2)	0.0012 (18)	0.0050 (18)	-0.0076 (17)
C9	0.041 (3)	0.049 (2)	0.052 (3)	0.010 (2)	0.004 (2)	-0.016 (2)
C10	0.056 (3)	0.063 (3)	0.043 (2)	0.011 (2)	0.004 (2)	-0.002 (2)
C11	0.048 (3)	0.057 (2)	0.037 (2)	0.004 (2)	0.0087 (19)	-0.0037 (19)
C12	0.045 (2)	0.042 (2)	0.047 (2)	0.0017 (18)	0.0105 (19)	-0.0033 (18)
C13	0.036 (2)	0.039 (2)	0.035 (2)	0.0034 (17)	0.0069 (17)	-0.0060 (17)
C14	0.040 (3)	0.0314 (19)	0.041 (2)	-0.0039 (18)	0.0104 (19)	-0.0031 (16)
C15	0.042 (2)	0.038 (2)	0.047 (2)	-0.0031 (19)	0.0085 (19)	-0.0060 (17)
C16	0.063 (3)	0.037 (2)	0.058 (3)	-0.001 (2)	0.020 (2)	-0.0095 (19)
C17	0.070 (3)	0.045 (2)	0.043 (2)	-0.020 (2)	0.017 (2)	-0.0098 (19)
C18	0.046 (3)	0.078 (3)	0.051 (3)	-0.023 (2)	0.002 (2)	-0.006 (2)
C19	0.050 (3)	0.048 (2)	0.054 (3)	0.000 (2)	0.008 (2)	0.001 (2)
C20	0.072 (3)	0.059 (3)	0.071 (3)	0.007 (2)	-0.005 (3)	0.001 (2)
C21	0.127 (4)	0.049 (2)	0.046 (3)	-0.006 (3)	0.026 (3)	0.0022 (19)
C22	0.047 (3)	0.091 (3)	0.072 (3)	0.011 (2)	0.023 (2)	0.000 (2)
C23	0.077 (3)	0.073 (3)	0.053 (3)	0.000 (3)	0.015 (2)	0.012 (2)
C24	0.041 (3)	0.035 (2)	0.041 (2)	0.0040 (17)	0.0114 (19)	-0.0045 (16)
C25	0.045 (3)	0.039 (2)	0.051 (2)	-0.0023 (19)	0.0093 (19)	-0.0066 (18)
C26	0.063 (3)	0.0286 (19)	0.057 (3)	0.001 (2)	0.015 (2)	-0.0072 (17)
C27	0.049 (3)	0.044 (2)	0.048 (2)	0.011 (2)	0.012 (2)	0.0019 (18)
C28	0.039 (3)	0.061 (3)	0.060 (3)	-0.001 (2)	0.008 (2)	-0.016 (2)
C29	0.043 (3)	0.046 (2)	0.064 (3)	0.001 (2)	0.011 (2)	-0.0189 (19)
C30	0.080 (3)	0.053 (3)	0.072 (3)	0.020 (2)	0.015 (3)	-0.006 (2)
Geometric para	meters (Å, °)					
Cl1—C17		1,730 (4)	C14—4	C15	1 374	(4)
N1-C13		1 398 (4)	C14—(C19	1 380	(5)
N1-C1		1.405 (4)	C15—4	C16	1 385	(4)
N1-C14		1.447 (4)	C15—1	H15	0.93	(.)
01—C5		1.228 (4)	C16—4	C17	1 374	(5)
02		1.234 (4)	C16—1	H16	0.93	<u>\-</u> J
03-027		1 387 (4)	C17—4	C18	1 373	(5)
00 021		1.507 (1)			1.575	

O3—C30	1.420 (4)	C18—C19	1.387 (5)
C1—C6	1.349 (4)	C18—H18	0.93
C1—C2	1.510 (4)	С19—Н19	0.93
C2—C3	1.532 (4)	C20—H20A	0.96
C2—H2A	0.97	C20—H20B	0.96
С2—Н2В	0.97	C20—H20C	0.96
C3—C4	1.517 (5)	C21—H21A	0.96
C3—C20	1.528 (5)	C21—H21B	0.96
C3—C21	1.534 (5)	C21—H21C	0.96
C4—C5	1.496 (5)	C22—H22A	0.96
C4—H4A	0.97	C22—H22B	0.96
C4—H4B	0.97	C22—H22C	0.96
C5—C6	1.478 (5)	C23—H23A	0.96
C6—C7	1.506 (4)	C23—H23B	0.96
С7—С8	1.513 (4)	С23—Н23С	0.96
C7—C24	1.530 (4)	C24—C25	1.381 (4)
С7—Н7	0.98	C24—C29	1.384 (5)
C8—C13	1.352 (4)	C25—C26	1.388 (4)
C8—C9	1.458 (5)	С25—Н25	0.93
C9—C10	1.513 (5)	C26—C27	1.370 (5)
C10-C11	1.519 (5)	С26—Н26	0.93
C10—H10A	0.97	C27—C28	1.383 (5)
C10—H10B	0.97	C28—C29	1.377 (5)
C11—C23	1.533 (5)	C28—H28	0.93
C11—C12	1.536 (5)	С29—Н29	0.93
C11—C22	1.537 (5)	C30—H30A	0.96
C12—C13	1.508 (4)	C30—H30B	0.96
C12—H12A	0.97	С30—Н30С	0.96
C12—H12B	0.97		
C13—N1—C1	120.1 (3)	C15-C14-N1	121.0 (3)
C13—N1—C14	120.6 (3)	C19—C14—N1	119.2 (3)
C1—N1—C14	118.8 (3)	C14—C15—C16	120.6 (4)
C27—O3—C30	117.6 (3)	C14—C15—H15	119.7
C6—C1—N1	120.6 (3)	С16—С15—Н15	119.7
C6—C1—C2	122.4 (3)	C17—C16—C15	119.1 (4)
N1—C1—C2	117.0 (3)	С17—С16—Н16	120.4
C1—C2—C3	113.2 (3)	C15-C16-H16	120.4
C1—C2—H2A	108.9	C18—C17—C16	120.9 (3)
С3—С2—Н2А	108.9	C18—C17—Cl1	119.9 (3)
C1—C2—H2B	108.9	C16—C17—Cl1	119.2 (3)
С3—С2—Н2В	108.9	C17—C18—C19	119.7 (4)
H2A—C2—H2B	107.8	C17—C18—H18	120.2
C4—C3—C20	109.8 (3)	C19-C18-H18	120.2
C4—C3—C2	107.4 (3)	C14—C19—C18	119.9 (4)
C20—C3—C2	110.2 (3)	C14—C19—H19	120.0
C4—C3—C21	110.9 (3)	C18—C19—H19	120.0
C20—C3—C21	109.5 (3)	C3—C20—H20A	109.5
C2—C3—C21	109.1 (3)	С3—С20—Н20В	109.5
C5—C4—C3	113.7 (3)	H20A—C20—H20B	109.5

С5—С4—Н4А	108.8	C3—C20—H20C	109.5
C3—C4—H4A	108.8	H20A—C20—H20C	109.5
C5—C4—H4B	108.8	H20B—C20—H20C	109.5
C3—C4—H4B	108.8	C3—C21—H21A	109.5
Н4А—С4—Н4В	107.7	C3—C21—H21B	109.5
O1—C5—C6	120.2 (3)	H21A—C21—H21B	109.5
O1—C5—C4	121.8 (3)	C3—C21—H21C	109.5
C6—C5—C4	118.0 (3)	H21A—C21—H21C	109.5
C1—C6—C5	119.9 (3)	H21B—C21—H21C	109.5
C1—C6—C7	122.6 (3)	C11—C22—H22A	109.5
C5—C6—C7	117.5 (3)	C11—C22—H22B	109.5
C6—C7—C8	109.6 (3)	H22A—C22—H22B	109.5
C6—C7—C24	111.8 (3)	C11—C22—H22C	109.5
C8—C7—C24	111.0 (3)	H22A—C22—H22C	109.5
С6—С7—Н7	108.1	H22B—C22—H22C	109.5
С8—С7—Н7	108.1	C11—C23—H23A	109.5
С24—С7—Н7	108.1	C11—C23—H23B	109.5
С13—С8—С9	119.7 (3)	H23A—C23—H23B	109.5
С13—С8—С7	122.6 (3)	C11—C23—H23C	109.5
С9—С8—С7	117.7 (3)	H23A—C23—H23C	109.5
02—C9—C8	120.8 (4)	H23B—C23—H23C	109.5
O2—C9—C10	120.3 (3)	C25—C24—C29	117.3 (3)
C8—C9—C10	118.8 (3)	C25—C24—C7	121.6 (3)
C9—C10—C11	114.9 (3)	C29—C24—C7	121.2 (3)
C9—C10—H10A	108.6	C24—C25—C26	122.0 (4)
C11-C10-H10A	108.6	C24—C25—H25	119.0
C9—C10—H10B	108.6	C26—C25—H25	119.0
C11-C10-H10B	108.6	C27—C26—C25	119.1 (3)
H10A—C10—H10B	107.5	C27—C26—H26	120.4
C10-C11-C23	109.5 (3)	C25—C26—H26	120.4
C10-C11-C12	107.7 (3)	C26—C27—C28	120.3 (4)
C23—C11—C12	109.3 (3)	C26—C27—O3	124.2 (3)
C10-C11-C22	110.7 (3)	C28—C27—O3	115.6 (4)
C23—C11—C22	109.4 (3)	C29—C28—C27	119.5 (4)
C12—C11—C22	110.3 (3)	C29—C28—H28	120.3
C13—C12—C11	113.1 (3)	C27—C28—H28	120.3
C13—C12—H12A	109.0	C28—C29—C24	121.8 (3)
C11—C12—H12A	109.0	C28—C29—H29	119.1
C13—C12—H12B	109.0	C24—C29—H29	119.1
C11—C12—H12B	109.0	O3—C30—H30A	109.5
H12A—C12—H12B	107.8	O3—C30—H30B	109.5
C8—C13—N1	120.3 (3)	H30A—C30—H30B	109.5
C8—C13—C12	122.4 (3)	O3—C30—H30C	109.5
N1-C13-C12	117.2 (3)	H30A—C30—H30C	109.5
C15-C14-C19	119.7 (3)	H30B—C30—H30C	109.5
C13—N1—C1—C6	-10.0 (5)	C22-C11-C12-C13	69.6 (4)
C14—N1—C1—C6	177.3 (3)	C9—C8—C13—N1	-172.4 (3)
C13—N1—C1—C2	168.5 (3)	C7—C8—C13—N1	8.0 (5)
C14—N1—C1—C2	-4.2 (4)	C9—C8—C13—C12	6.4 (5)

C6—C1—C2—C3	-23.9(5)	C7—C8—C13—C12	-173.2 (3)
N1—C1—C2—C3	157.6 (3)	C1—N1—C13—C8	8.8 (5)
C1—C2—C3—C4	51.3 (4)	C14—N1—C13—C8	-178.7 (3)
C1—C2—C3—C20	-68.3 (4)	C1—N1—C13—C12	-170.0 (3)
C1—C2—C3—C21	171.5 (3)	C14—N1—C13—C12	2.5 (5)
C20—C3—C4—C5	64.3 (4)	C11—C12—C13—C8	25.0 (5)
C2—C3—C4—C5	-55.5 (4)	C11—C12—C13—N1	-156.2 (3)
C21—C3—C4—C5	-174.6 (3)	C13—N1—C14—C15	-79.9 (4)
C3—C4—C5—O1	-149.3 (4)	C1—N1—C14—C15	92.7 (4)
C3—C4—C5—C6	31.8 (5)	C13—N1—C14—C19	103.4 (4)
N1-C1-C6-C5	175.5 (3)	C1—N1—C14—C19	-84.0 (4)
C2—C1—C6—C5	-2.9 (5)	C19—C14—C15—C16	0.6 (5)
N1—C1—C6—C7	-5.7 (5)	N1-C14-C15-C16	-176.0 (3)
C2—C1—C6—C7	175.9 (3)	C14-C15-C16-C17	1.1 (5)
O1-C5-C6-C1	-179.8 (3)	C15—C16—C17—C18	-2.0 (6)
C4—C5—C6—C1	-0.9 (5)	C15—C16—C17—Cl1	177.7 (3)
O1—C5—C6—C7	1.4 (5)	C16—C17—C18—C19	1.0 (6)
C4—C5—C6—C7	-179.7 (3)	Cl1—C17—C18—C19	-178.6 (3)
C1—C6—C7—C8	19.8 (5)	C15-C14-C19-C18	-1.5 (5)
C5—C6—C7—C8	-161.5 (3)	N1-C14-C19-C18	175.2 (3)
C1—C6—C7—C24	-103.8 (4)	C17-C18-C19-C14	0.7 (6)
C5—C6—C7—C24	75.0 (4)	C6—C7—C24—C25	-120.9 (4)
C6—C7—C8—C13	-21.0 (5)	C8—C7—C24—C25	116.4 (4)
C24—C7—C8—C13	103.0 (4)	C6—C7—C24—C29	58.3 (4)
C6—C7—C8—C9	159.5 (3)	C8—C7—C24—C29	-64.5 (4)
C24—C7—C8—C9	-76.5 (4)	C29—C24—C25—C26	0.0 (5)
C13—C8—C9—O2	170.4 (3)	C7—C24—C25—C26	179.2 (3)
C7—C8—C9—O2	-10.1 (5)	C24—C25—C26—C27	-0.7 (5)
C13—C8—C9—C10	-8.1 (5)	C25—C26—C27—C28	1.4 (5)
C7—C8—C9—C10	171.5 (3)	C25—C26—C27—O3	180.0 (3)
O2—C9—C10—C11	159.4 (3)	C30—O3—C27—C26	-1.7 (5)
C8—C9—C10—C11	-22.2 (5)	C30—O3—C27—C28	177.0 (3)
C9—C10—C11—C23	168.9 (3)	C26—C27—C28—C29	-1.4 (6)
C9—C10—C11—C12	50.2 (4)	O3—C27—C28—C29	179.9 (3)
C9—C10—C11—C22	-70.4 (4)	C27—C28—C29—C24	0.7 (6)
C10-C11-C12-C13	-51.3 (4)	C25—C24—C29—C28	0.0 (5)
C23—C11—C12—C13	-170.2 (3)	C7—C24—C29—C28	-179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
C15—H15····O2 ⁱ	0.93	2.48	3.366 (4)	161
C21—H21A···O2 ⁱⁱ	0.96	2.53	3.418 (4)	154
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) x , $-y+3/2$, $z-1/2$.				

